Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On modular computation of Groebner bases with integer coefficients (1312.6331v1)

Published 22 Dec 2013 in math.AC and cs.SC

Abstract: Let $I_1\subset I_2\subset\dots$ be an increasing sequence of ideals of the ring $\Bbb Z[X]$, $X=(x_1,\dots,x_n)$ and let $I$ be their union. We propose an algorithm to compute the Gr\"obner base of $I$ under the assumption that the Gr\"obner bases of the ideal $\Bbb Q I$ of the ring $\Bbb Q[X]$ and the the ideals $I\otimes(\Bbb Z/m\Bbb Z)$ of the rings $(\Bbb Z/m\Bbb Z)[X]$ are known. Such an algorithmic problem arises, for example, in the construction of Markov and semi-Markov traces on cubic Hecke algebras.

Summary

We haven't generated a summary for this paper yet.