Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Peierls substitution for magnetic Bloch bands (1312.5931v3)

Published 20 Dec 2013 in math-ph, math.MP, and quant-ph

Abstract: We consider the Schr\"odinger operator in two dimensions with a periodic potential and a strong constant magnetic field perturbed by slowly varying non-periodic scalar and vector potentials, $\phi(\epsilon x)$ and $A(\epsilon x)$, for $\epsilon\ll 1$. For each isolated family of magnetic Bloch bands we derive an effective Hamiltonian that is unitarily equivalent to the restriction of the Schr\"odinger operator to a corresponding almost invariant subspace. At leading order, our effective Hamiltonian can be interpreted as the Peierls substitution Hamiltonian widely used in physics for non-magnetic Bloch bands. However, while for non-magnetic Bloch bands the corresponding result is well understood, for magnetic Bloch bands it is not clear how to even define a Peierls substitution Hamiltonian beyond a formal expression. The source of the difficulty is a topological obstruction: magnetic Bloch bundles are generically not trivializable. As a consequence, Peierls substitution Hamiltonians for magnetic Bloch bands turn out to be pseudodifferential operators acting on sections of non-trivial vector bundles over a two-torus, the reduced Brillouin zone. Part of our contribution is the construction of a suitable Weyl calculus for such pseudos. As an application of our results we construct a new family of canonical one-band Hamiltonians $HB_{\theta,q}$ for magnetic Bloch bands with Chern number $\theta\in \mathbb{Z}$ that generalizes the Hofstadter model $HB_{\rm Hof} = HB_{0,1}$ for a single non-magnetic Bloch band. It turns out that $HB_{\theta,q}$ is isospectral to $H{q2B}_{\rm Hof}$ for any $\theta$ and all spectra agree with the Hofstadter spectrum depicted in his famous black and white butterfly. However, the resulting Chern numbers of subbands, corresponding to Hall conductivities, depend on $\theta$ and $q$, and thus the models lead to different colored butterflies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube