Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the degree of the polynomial defining a planar algebraic curves of constant width (1312.4358v1)

Published 16 Dec 2013 in math.AG and cs.CG

Abstract: In this paper, we consider a family of closed planar algebraic curves $\mathcal{C}$ which are given in parametrization form via a trigonometric polynomial $p$. When $\mathcal{C}$ is the boundary of a compact convex set, the polynomial $p$ represents the support function of this set. Our aim is to examine properties of the degree of the defining polynomial of this family of curves in terms of the degree of $p$. Thanks to the theory of elimination, we compute the total degree and the partial degrees of this polynomial, and we solve in addition a question raised by Rabinowitz in \cite{Rabi} on the lowest degree polynomial whose graph is a non-circular curve of constant width. Computations of partial degrees of the defining polynomial of algebraic surfaces of constant width are also provided in the same way.

Citations (5)

Summary

We haven't generated a summary for this paper yet.