Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Computing with Planar Algebraic Curves (1401.5690v2)

Published 22 Jan 2014 in cs.SC, cs.NA, math.AG, math.GT, and math.NA

Abstract: In this paper, we give improved bounds for the computational complexity of computing with planar algebraic curves. More specifically, for arbitrary coprime polynomials $f$, $g \in \mathbb{Z}[x,y]$ and an arbitrary polynomial $h \in \mathbb{Z}[x,y]$, each of total degree less than $n$ and with integer coefficients of absolute value less than $2\tau$, we show that each of the following problems can be solved in a deterministic way with a number of bit operations bounded by $\tilde{O}(n6+n5\tau)$, where we ignore polylogarithmic factors in $n$ and $\tau$: (1) The computation of isolating regions in $\mathbb{C}2$ for all complex solutions of the system $f = g = 0$, (2) the computation of a separating form for the solutions of $f = g = 0$, (3) the computation of the sign of $h$ at all real valued solutions of $f = g = 0$, and (4) the computation of the topology of the planar algebraic curve $\mathcal{C}$ defined as the real valued vanishing set of the polynomial $f$. Our bound improves upon the best currently known bounds for the first three problems by a factor of $n2$ or more and closes the gap to the state-of-the-art randomized complexity for the last problem.

Citations (30)

Summary

We haven't generated a summary for this paper yet.