Near Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices via Sparse Power Factorization (1312.0525v2)
Abstract: Compressed sensing of simultaneously sparse and low-rank matrices enables recovery of sparse signals from a few linear measurements of their bilinear form. One important question is how many measurements are needed for a stable reconstruction in the presence of measurement noise. Unlike conventional compressed sensing for sparse vectors, where convex relaxation via the $\ell_1$-norm achieves near optimal performance, for compressed sensing of sparse low-rank matrices, it has been shown recently Oymak et al. that convex programmings using the nuclear norm and the mixed norm are highly suboptimal even in the noise-free scenario. We propose an alternating minimization algorithm called sparse power factorization (SPF) for compressed sensing of sparse rank-one matrices. For a class of signals whose sparse representation coefficients are fast-decaying, SPF achieves stable recovery of the rank-1 matrix formed by their outer product and requires number of measurements within a logarithmic factor of the information-theoretic fundamental limit. For the recovery of general sparse low-rank matrices, we propose subspace-concatenated SPF (SCSPF), which has analogous near optimal performance guarantees to SPF in the rank-1 case. Numerical results show that SPF and SCSPF empirically outperform convex programmings using the best known combinations of mixed norm and nuclear norm.