Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Honest Bayesian confidence sets for the L2-norm (1311.7474v2)

Published 29 Nov 2013 in math.ST and stat.TH

Abstract: We investigate the problem of constructing Bayesian credible sets that are honest and adaptive for the L2-loss over a scale of Sobolev classes with regularity ranging between [D; 2D], for some given D in the context of the signal-in-white-noise model. We consider a scale of prior distributions indexed by a regularity hyper-parameter and choose the hyper-parameter both by marginal likelihood empirical Bayes and by hierarchical Bayes method, respectively. Next we consider a ball centered around the corresponding posterior mean with prescribed posterior probability. We show by theory and examples that both the empirical Bayes and the hierarchical Bayes credible sets give misleading, overconfident uncertainty quantification for certain oddly behaving truth. Then we construct a new empirical Bayes method based on risk estimation, which provides the correct uncertainty quantification and optimal size.

Summary

We haven't generated a summary for this paper yet.