A generalization of the quadrangulation relation to constellations and hypermaps (1311.6991v1)
Abstract: Constellations and hypermaps generalize combinatorial maps, i.e. embedding of graphs in a surface, in terms of factorization of permutations. In this paper, we extend a result of Jackson and Visentin (1990) stating an enumerative relation between quadrangulations and bipartite quadrangulations. We show a similar relation between hypermaps and constellations by using a result of Littlewood on factorization of characters. A combinatorial proof of Littlewood's result is also given. Furthermore, we show that coefficients in our relation are all positive integers, hinting possibility of a combinatorial interpretation. Using this enumerative relation, we recover a result on the asymptotic behavior of hypermaps in Chapuy (2009).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.