Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster (1311.2907v2)

Published 12 Nov 2013 in math.PR

Abstract: We consider a continuum percolation model on $\Rd$, $d\geq 1$.For $t,\lambda\in (0,\infty)$ and $d\in{1,2,3}$, the occupied set is given by the union of independent Brownian paths running up to time $t$ whoseinitial points form a Poisson point process with intensity $\lambda\textgreater{}0$.When $d\geq 4$, the Brownian paths are replaced by Wiener sausageswith radius $r\textgreater{}0$.We establish that, for $d=1$ and all choices of $t$, no percolation occurs,whereas for $d\geq 2$, there is a non-trivial percolation transitionin $t$, provided $\lambda$ and $r$ are chosen properly.The last statement means that $\lambda$ has to be chosen to be strictly smaller than the critical percolation parameter for the occupied set at time zero(which is infinite when $d\in{2,3}$, but finite and dependent on $r$ when $d\geq 4$).We further show that for all $d\geq 2$, the unbounded cluster in the supercritical phase is unique.Along the way a finite box criterion for non-percolation in the Boolean model is extended to radius distributions with an exponential tail. This may be of independent interest.The present paper settles the basic properties of the model and should be viewed as a jumpboard for finer results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.