Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L_{1/2}$ Regularization: Convergence of Iterative Half Thresholding Algorithm (1311.0156v3)

Published 1 Nov 2013 in cs.NA

Abstract: In recent studies on sparse modeling, the nonconvex regularization approaches (particularly, $L_{q}$ regularization with $q\in(0,1)$) have been demonstrated to possess capability of gaining much benefit in sparsity-inducing and efficiency. As compared with the convex regularization approaches (say, $L_{1}$ regularization), however, the convergence issue of the corresponding algorithms are more difficult to tackle. In this paper, we deal with this difficult issue for a specific but typical nonconvex regularization scheme, the $L_{1/2}$ regularization, which has been successfully used to many applications. More specifically, we study the convergence of the iterative \textit{half} thresholding algorithm (the \textit{half} algorithm for short), one of the most efficient and important algorithms for solution to the $L_{1/2}$ regularization. As the main result, we show that under certain conditions, the \textit{half} algorithm converges to a local minimizer of the $L_{1/2}$ regularization, with an eventually linear convergence rate. The established result provides a theoretical guarantee for a wide range of applications of the \textit{half} algorithm. We provide also a set of simulations to support the correctness of theoretical assertions and compare the time efficiency of the \textit{half} algorithm with other known typical algorithms for $L_{1/2}$ regularization like the iteratively reweighted least squares (IRLS) algorithm and the iteratively reweighted $l_{1}$ minimization (IRL1) algorithm.

Summary

We haven't generated a summary for this paper yet.