Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iteratively Reweighted Least Squares for Basis Pursuit with Global Linear Convergence Rate (2012.12250v3)

Published 22 Dec 2020 in math.OC, cs.IT, cs.LG, cs.NA, math.IT, and math.NA

Abstract: The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized algorithms are typically required to solve the corresponding high-dimensional non-smooth optimization for large instances. Iteratively Reweighted Least Squares (IRLS) is a widely used algorithm for this purpose due its excellent numerical performance. However, while existing theory is able to guarantee convergence of this algorithm to the minimizer, it does not provide a global convergence rate. In this paper, we prove that a variant of IRLS converges with a global linear rate to a sparse solution, i.e., with a linear error decrease occurring immediately from any initialization, if the measurements fulfill the usual null space property assumption. We support our theory by numerical experiments showing that our linear rate captures the correct dimension dependence. We anticipate that our theoretical findings will lead to new insights for many other use cases of the IRLS algorithm, such as in low-rank matrix recovery.

Citations (14)

Summary

We haven't generated a summary for this paper yet.