Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Intermittency for the wave and heat equations with fractional noise in time (1311.0021v2)

Published 31 Oct 2013 in math.PR

Abstract: In this article, we consider the stochastic wave and heat equations driven by a Gaussian noise which is spatially homogeneous and behaves in time like a fractional Brownian motion with Hurst index $H>1/2$. The solutions of these equations are interpreted in the Skorohod sense. Using Malliavin calculus techniques, we obtain an upper bound for the moments of order $p\geq2$ of the solution. In the case of the wave equation, we derive a Feynman-Kac-type formula for the second moment of the solution, based on the points of a planar Poisson process. This is an extension of the formula given by Dalang, Mueller and Tribe [Trans. Amer. Math. Soc. 360 (2008) 4681-4703], in the case $H=1/2$, and allows us to obtain a lower bound for the second moment of the solution. These results suggest that the moments of the solution grow much faster in the case of the fractional noise in time than in the case of the white noise in time.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube