Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

An Unsupervised Feature Learning Approach to Improve Automatic Incident Detection (1310.7795v1)

Published 29 Oct 2013 in cs.LG

Abstract: Sophisticated automatic incident detection (AID) technology plays a key role in contemporary transportation systems. Though many papers were devoted to study incident classification algorithms, few study investigated how to enhance feature representation of incidents to improve AID performance. In this paper, we propose to use an unsupervised feature learning algorithm to generate higher level features to represent incidents. We used real incident data in the experiments and found that effective feature mapping function can be learnt from the data crosses the test sites. With the enhanced features, detection rate (DR), false alarm rate (FAR) and mean time to detect (MTTD) are significantly improved in all of the three representative cases. This approach also provides an alternative way to reduce the amount of labeled data, which is expensive to obtain, required in training better incident classifiers since the feature learning is unsupervised.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.