Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Arithmetic invariant theory II (1310.7689v1)

Published 29 Oct 2013 in math.NT, math.AG, and math.RT

Abstract: Let $k$ be a field, let $G$ be a reductive group, and let $V$ be a linear representation of $G$. Let $V//G = Spec(Sym(V*))G$ denote the geometric quotient and let $\pi: V \to V//G$ denote the quotient map. Arithmetic invariant theory studies the map $\pi$ on the level of $k$-rational points. In this article, which is a continuation of the results of our earlier paper "Arithmetic invariant theory", we provide necessary and sufficient conditions for a rational element of $V//G$ to lie in the image of $\pi$, assuming that generic stabilizers are abelian. We illustrate the various scenarios that can occur with some recent examples of arithmetic interest.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.