Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

A two-step model and the algorithm for recalling in recommender systems (1310.6110v1)

Published 23 Oct 2013 in cs.IR

Abstract: When a user finds an interesting recommendation in a recommender system, the user may want to recall related items recommended in the past to reconsider or to enjoy them again. If the system can pick up such "recalled" items at each user's request, it must deepen the user experience. We propose a model and the algorithm for such personalized "recalling" in conventional recommender systems, which is an application of neural networks for associative memory. In our model, the "recalled" items can reflect each user's personality beyond naive similarities between items.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.