Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Embedding binary sequences into Bernoulli site percolation on $\mathbb{Z}^3$ (1310.5262v1)

Published 19 Oct 2013 in math.PR

Abstract: We investigate the problem of embedding infinite binary sequences into Bernoulli site percolation on $\mathbb{Z}d$ with parameter $p$, known also as percolation of words.\ In 1995, I.\ Benjamini and H.\ Kesten proved that, for $d \geq 10$ and $p=1/2$, all sequences can be embedded, almost surely. They conjectured that the same should hold for $d \geq 3$. In this paper we consider $d \geq 3$ and $p \in (p_c(d), 1-p_c(d))$, where $p_c(d)<1/2$ is the critical threshold for site percolation on $\mathbb{Z}d$. We show that there exists an integer $M = M (p)$, such that, a.s., every binary sequence, for which every run of consecutive {0s} or {1s} contains at least $M$ digits, can be embedded.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.