Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Geometric view on noneikonal waves (1310.5050v2)

Published 18 Oct 2013 in physics.plasm-ph, physics.class-ph, and physics.optics

Abstract: An axiomatic theory of classical nondissipative waves is proposed that is constructed based on the definition of a wave as a multidimensional oscillator. Waves are represented as abstract vectors $|\psi\rangle$ in the appropriately defined space $\Psi$ with a Hermitian metric. The metric is usually positive-definite but can be more general in the presence of negative-energy waves (which are typically unstable and must not be confused with negative-frequency waves). The very form of wave equations is derived from properties of $\Psi$. The generic wave equation is shown to be a quantumlike Schrodinger equation; hence one-to-one correspondence with the mathematical framework of quantum mechanics is established, and the quantum-mechanical machinery becomes applicable to classical waves "as is". The classical wave action is defined as the density operator, $|\psi\rangle\langle\psi|$. The coordinate and momentum spaces, not necessarily Euclidean, need not be postulated but rather emerge when applicable. Various kinetic equations flow as projections of the von Neumann equation for $|\psi\rangle\langle\psi|$. The previously known action conservation theorems for noneikonal waves and the conventional Wigner-Weyl-Moyal formalism are generalized and subsumed under a unifying invariant theory. Whitham's equations are recovered as the corresponding fluid limit in the geometrical-optics approximation. The Liouville equation is also yielded as a special case, yet in a somewhat different limit; thus ray tracing, and especially nonlinear ray tracing, is found to be more subtle than commonly assumed. Applications of this axiomatization are also discussed, briefly, for some characteristic equations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube