Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Deep Multiple Kernel Learning (1310.3101v1)

Published 11 Oct 2013 in stat.ML and cs.LG

Abstract: Deep learning methods have predominantly been applied to large artificial neural networks. Despite their state-of-the-art performance, these large networks typically do not generalize well to datasets with limited sample sizes. In this paper, we take a different approach by learning multiple layers of kernels. We combine kernels at each layer and then optimize over an estimate of the support vector machine leave-one-out error rather than the dual objective function. Our experiments on a variety of datasets show that each layer successively increases performance with only a few base kernels.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.