Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs (1310.0512v2)

Published 1 Oct 2013 in stat.ML

Abstract: In standard clustering problems, data points are represented by vectors, and by stacking them together, one forms a data matrix with row or column cluster structure. In this paper, we consider a class of binary matrices, arising in many applications, which exhibit both row and column cluster structure, and our goal is to exactly recover the underlying row and column clusters by observing only a small fraction of noisy entries. We first derive a lower bound on the minimum number of observations needed for exact cluster recovery. Then, we propose three algorithms with different running time and compare the number of observations needed by them for successful cluster recovery. Our analytical results show smooth time-data trade-offs: one can gradually reduce the computational complexity when increasingly more observations are available.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.