Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On MAP Inference by MWSS on Perfect Graphs (1309.6872v1)

Published 26 Sep 2013 in cs.AI and cs.DS

Abstract: Finding the most likely (MAP) configuration of a Markov random field (MRF) is NP-hard in general. A promising, recent technique is to reduce the problem to finding a maximum weight stable set (MWSS) on a derived weighted graph, which if perfect, allows inference in polynomial time. We derive new results for this approach, including a general decomposition theorem for MRFs of any order and number of labels, extensions of results for binary pairwise models with submodular cost functions to higher order, and an exact characterization of which binary pairwise MRFs can be efficiently solved with this method. This defines the power of the approach on this class of models, improves our toolbox and expands the range of tractable models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.