Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Optimality of Dual Decomposition for MAP Inference in Pairwise MRFs (1708.03314v1)

Published 9 Aug 2017 in cs.DS

Abstract: Markov random fields (MRFs) are a powerful tool for modelling statistical dependencies for a set of random variables using a graphical representation. An important computational problem related to MRFs, called maximum a posteriori (MAP) inference, is finding a joint variable assignment with the maximal probability. It is well known that the two popular optimisation techniques for this task, linear programming (LP) relaxation and dual decomposition (DD), have a strong connection both providing an optimal solution to the MAP problem when a corresponding LP relaxation is tight. However, less is known about their relationship in the opposite and more realistic case. In this paper, we explain how the fully integral assignments obtained via DD partially agree with the optimal fractional assignments via LP relaxation when the latter is not tight. In particular, for binary pairwise MRFs the corresponding result suggests that both methods share the partial optimality property of their solutions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.