Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Mining using Unguided Symbolic Regression on a Blast Furnace Dataset (1309.5931v1)

Published 23 Sep 2013 in cs.NE

Abstract: In this paper a data mining approach for variable selection and knowledge extraction from datasets is presented. The approach is based on unguided symbolic regression (every variable present in the dataset is treated as the target variable in multiple regression runs) and a novel variable relevance metric for genetic programming. The relevance of each input variable is calculated and a model approximating the target variable is created. The genetic programming configurations with different target variables are executed multiple times to reduce stochastic effects and the aggregated results are displayed as a variable interaction network. This interaction network highlights important system components and implicit relations between the variables. The whole approach is tested on a blast furnace dataset, because of the complexity of the blast furnace and the many interrelations between the variables. Finally the achieved results are discussed with respect to existing knowledge about the blast furnace process.

Citations (9)

Summary

We haven't generated a summary for this paper yet.