Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution (1712.08048v3)

Published 21 Dec 2017 in stat.ME and stat.ML

Abstract: Variable selection for Gaussian process models is often done using automatic relevance determination, which uses the inverse length-scale parameter of each input variable as a proxy for variable relevance. This implicitly determined relevance has several drawbacks that prevent the selection of optimal input variables in terms of predictive performance. To improve on this, we propose two novel variable selection methods for Gaussian process models that utilize the predictions of a full model in the vicinity of the training points and thereby rank the variables based on their predictive relevance. Our empirical results on synthetic and real world data sets demonstrate improved variable selection compared to automatic relevance determination in terms of variability and predictive performance.

Citations (49)

Summary

We haven't generated a summary for this paper yet.