Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Log-normal distribution from a process that is not multiplicative but is additive (1309.5709v2)

Published 23 Sep 2013 in physics.flu-dyn, cond-mat.stat-mech, and physics.data-an

Abstract: The central limit theorem ensures that a sum of random variables tends to a Gaussian distribution as their total number tends to infinity. However, for a class of positive random variables, we find that the sum tends faster to a log-normal distribution. Although the sum tends eventually to a Gaussian distribution, the distribution of the sum is always close to a log-normal distribution rather than to any Gaussian distribution if the summands are numerous enough. This is in contrast to the current consensus that any log-normal distribution is due to a product of random variables, i.e., a multiplicative process, or equivalently to nonlinearity of the system. In fact, the log-normal distribution is also observable for a sum, i.e., an additive process that is typical of linear systems. We show conditions for such a sum, an analytical example, and an application to random scalar fields such as of turbulence.

Summary

We haven't generated a summary for this paper yet.