Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The sum of log-normal variates in geometric Brownian motion (1802.02939v1)

Published 8 Feb 2018 in cond-mat.stat-mech and q-fin.MF

Abstract: Geometric Brownian motion (GBM) is a key model for representing self-reproducing entities. Self-reproduction may be considered the definition of life [5], and the dynamics it induces are of interest to those concerned with living systems from biology to economics. Trajectories of GBM are distributed according to the well-known log-normal density, broadening with time. However, in many applications, what's of interest is not a single trajectory but the sum, or average, of several trajectories. The distribution of these objects is more complicated. Here we show two different ways of finding their typical trajectories. We make use of an intriguing connection to spin glasses: the expected free energy of the random energy model is an average of log-normal variates. We make the mapping to GBM explicit and find that the free energy result gives qualitatively correct behavior for GBM trajectories. We then also compute the typical sum of lognormal variates using Ito calculus. This alternative route is in close quantitative agreement with numerical work.

Summary

We haven't generated a summary for this paper yet.