Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Contraction analysis of nonlinear random dynamical systems (1309.5317v2)

Published 20 Sep 2013 in math.OC

Abstract: In order to bring contraction analysis into the very fruitful and topical fields of stochastic and Bayesian systems, we extend here the theory describes in \cite{Lohmiller98} to random differential equations. We propose new definitions of contraction (almost sure contraction and contraction in mean square) which allow to master the evolution of a stochastic system in two manners. The first one guarantees eventual exponential convergence of the system for almost all draws, whereas the other guarantees the exponential convergence in $L_2$ of to a unique trajectory. We then illustrate the relative simplicity of this extension by analyzing usual deterministic properties in the presence of noise. Specifically, we analyze stochastic gradient descent, impact of noise on oscillators synchronization and extensions of combination properties of contracting systems to the stochastic case. This is a first step towards combining the interesting and simplifying properties of contracting systems with the probabilistic approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube