Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexibility properties in Complex Analysis and Affine Algebraic Geometry (1309.3070v3)

Published 12 Sep 2013 in math.CV and math.AG

Abstract: In the last decades affine algebraic varieties and Stein manifolds with big (infinite-dimensional) automorphism groups have been intensively studied. Several notions expressing that the automorphisms group is big have been proposed. All of them imply that the manifold in question is an Oka-Forstneri\v{c} manifold. This important notion has also recently merged from the intensive studies around the homotopy principle in Complex Analysis. This homotopy principle, which goes back to the 1930's, has had an enormous impact on the development of the area of Several Complex Variables and the number of its applications is constantly growing. In this overview article we present 3 classes of properties: 1. density property, 2. flexibility 3. Oka-Forstneri\v{c}. For each class we give the relevant definitions, its most significant features and explain the known implications between all these properties. Many difficult mathematical problems could be solved by applying the developed theory, we indicate some of the most spectacular ones.

Summary

We haven't generated a summary for this paper yet.