Oka manifolds: From Oka to Stein and back (1211.6383v5)
Abstract: Oka theory has its roots in the classical Oka-Grauert principle whose main result is Grauert's classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomorphic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989. In this expository paper we discuss Oka manifolds and Oka maps. We describe equivalent characterizations of Oka manifolds, the functorial properties of this class, and geometric sufficient conditions for being Oka, the most important of which is Gromov's ellipticity. We survey the current status of the theory in terms of known examples of Oka manifolds, mention open problems and outline the proofs of the main results. In the appendix by F. Larusson it is explained how Oka manifolds and Oka maps, along with Stein manifolds, fit into an abstract homotopy-theoretic framework. The article is an expanded version of the lectures given by the author at the Winter School KAWA-4 in Toulouse, France, in January 2013. A more comprehensive exposition of Oka theory is available in the monograph F. Forstneric, Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis), Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 56, Springer-Verlag, Berlin-Heidelberg (2011).