Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Isotropy in Group Cohomology (1309.2438v1)

Published 10 Sep 2013 in math.GR

Abstract: The analogue of Lagrangians for symplectic forms over finite groups is studied, motivated by the fact that symplectic G-forms with a normal Lagrangian N<G are in one-to-one correspondence, up to inflation, with bijective 1-cocycle data on the quotients G/N. This yields a method to construct groups of central type from such quotients, known as Involutive Yang-Baxter groups. Another motivation for the search of normal Lagrangians comes from a non-commutative generalization of Heisenberg liftings which require normality. Although it is true that symplectic forms over finite nilpotent groups always admit Lagrangians, we exhibit an example where none of these subgroups is normal. However, we prove that symplectic forms over nilpotent groups always admit normal Lagrangians if all their p-Sylow subgroups are of order less than p8.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.