Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 211 tok/s Pro
2000 character limit reached

A restriction on centralizers in finite groups (1309.2231v1)

Published 9 Sep 2013 in math.GR

Abstract: For a given m>=1, we consider the finite non-abelian groups G for which |C_G(g):<g>|<=m for every g in G\Z(G). We show that the order of G can be bounded in terms of m and the largest prime divisor of the order of G. Our approach relies on dealing first with the case where G is a non-abelian finite p-group. In that situation, if we take m=pk to be a power of p, we show that |G|<=p{2k+2} with the only exception of Q_8. This bound is best possible, and implies that the order of G can be bounded by a function of m alone in the case of nilpotent groups.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.