Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and speces of codimension 2 (1309.2005v1)

Published 8 Sep 2013 in math.CO

Abstract: In this article we show that non-singular quadrics and non-singular Hermitian varieties are completely characterized by their intersection numbers with respect to hyperplanes and spaces of codimension 2. This strongly generalizes a result by Ferri and Tallini \cite{FT} and also provides necessary and sufficient conditions for quasi-quadrics (respectively their Hermitian analogues) to be non-singular quadrics (respectively Hermitian varieties).} \section{Introduction} When Segre \cite{Segre} proved his celebrated characterization of conics ("every set of $q+1$ points in $\mathrm{PG}(2,q)$, $q$ odd, no three of which are collinear, is a conic"), he did more than proving a beautiful and interesting theorem; he in fact provided the starting point of a new direction in combinatorial geometry. In this branch of combinatorics the idea is to provide purely combinatorial characterizations of objects classically defined in an algebraic way. This article wants to contribute to this theory by proving strong characterizations of classical finite polar spaces.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.