Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimal Branch Exchange for Distribution System Reconfiguration (1309.0651v4)

Published 3 Sep 2013 in math.OC

Abstract: The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. A popular heuristic search consists of repeated application of branch exchange, where some loads are transferred from one feeder to another feeder while maintaining the radial structure of the network, until no load transfer can further reduce the cost. Optimizing each branch exchange step is itself a mixed integer nonlinear program. In this paper we propose an efficient algorithm for optimizing a branch exchange step. It uses an AC power flow model and is based on the recently developed convex relaxation of optimal power flow. We provide a bound on the gap between the optimal cost and that of our solution. We prove that our algorithm is optimal when the voltage magnitudes are the same at all buses. We illustrate the effectiveness of our algorithm through the simulation of real- world distribution feeders.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube