Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Transfer operators and topological field theory (1308.4222v7)

Published 20 Aug 2013 in math-ph, hep-th, math.MP, and nlin.CD

Abstract: The transfer operator (TO) formalism of the dynamical systems (DS) theory is reformulated here in terms of the recently proposed supersymetric theory of stochastic differential equations (SDE). It turns out that the stochastically generalized TO (GTO) of the DS theory is the finite-time Fokker-Planck evolution operator. As a result comes the supersymmetric trivialization of the so-called sharp trace and sharp determinant of the GTO, with the former being the Witten index, which is also the stochastic generalization of the Lefschetz index so that it equals the Euler characteristic of the (closed) phase space for any flow vector field, noise metric, and temperature. The enabled possibility to apply the spectral theorems of the DS theory to the Fokker-Planck operators allows to extend the previous picture of the spontaneous topological supersymmetry (Q-symmetry) breaking onto the situations with negative ground state's attenuation rate. The later signifies the exponential growth of the number of periodic solutions/orbits in the large time limit, which is the unique feature of chaotic behavior proving that the spontaneous breakdown of Q-symmetry is indeed the field-theoretic definition and stochastic generalization of the concept of deterministic chaos. In addition, the previously proposed low-temperature classification of SDEs, i.e., thermodynamic equilibrium / noise-induced chaos ((anti)instanton condensation, intermittent) / ordinary chaos (non-integrability of the flow vector field), is complemented by the discussion of the high-temperature regime where the sharp boundary between the noise-induced and ordinary chaotic phases must smear out into a crossover, and at even higher temperatures the Q-symmetry is restored. The Weyl quantization is discussed in the context of the Ito-Stratonovich dilemma.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)