Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 11 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Bayes Regularized Graphical Model Estimation in High Dimensions (1308.3915v1)

Published 19 Aug 2013 in stat.ME

Abstract: There has been an intense development of Bayes graphical model estimation approaches over the past decade - however, most of the existing methods are restricted to moderate dimensions. We propose a novel approach suitable for high dimensional settings, by decoupling model fitting and covariance selection. First, a full model based on a complete graph is fit under novel class of continuous shrinkage priors on the precision matrix elements, which induces shrinkage under an equivalence with Cholesky-based regularization while enabling conjugate updates of entire precision matrices. Subsequently, we propose a post-fitting graphical model estimation step which proceeds using penalized joint credible regions to perform neighborhood selection sequentially for each node. The posterior computation proceeds using straightforward fully Gibbs sampling, and the approach is scalable to high dimensions. The proposed approach is shown to be asymptotically consistent in estimating the graph structure for fixed $p$ when the truth is a Gaussian graphical model. Simulations show that our approach compares favorably with Bayesian competitors both in terms of graphical model estimation and computational efficiency. We apply our methods to high dimensional gene expression and microRNA datasets in cancer genomics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube