Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dualizability in Low-Dimensional Higher Category Theory (1308.3574v1)

Published 16 Aug 2013 in math.AT and math.CT

Abstract: These lecture notes form an expanded account of a course given at the Summer School on Topology and Field Theories held at the Center for Mathematics at the University of Notre Dame, Indiana during the Summer of 2012. A similar lecture series was given in Hamburg in January 2013. The lecture notes are divided into two parts. The first part, consisting of the bulk of these notes, provides an expository account of the author's joint work with Christopher Douglas and Noah Snyder on dualizability in low-dimensional higher categories and the connection to low-dimensional topology. The cobordism hypothesis provides bridge between topology and algebra, establishing important connections between these two fields. One example of this is the prediction that the $n$-groupoid of so-called `fully-dualizable' objects in any symmetric monoidal $n$-category inherits an O(n)-action. However the proof of the cobordism hypothesis outlined by Lurie is elaborate and inductive. Many consequences of the cobordism hypothesis, such as the precise form of this O(n)-action, remain mysterious. The aim of these lectures is to explain how this O(n)-action emerges in a range of low category numbers ($n \leq 3$). The second part of these lecture notes focuses on the author's joint work with Clark Barwick on the Unicity Theorem, as presented in arXiv:1112.0040. This theorem and the accompanying machinery provide an axiomatization of the theory of $(\infty,n)$-categories and several tools for verifying these axioms. The aim of this portion of the lectures is to provide an introduction to this material.

Summary

We haven't generated a summary for this paper yet.