Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Duals and adjoints in higher Morita categories (1804.10924v2)

Published 29 Apr 2018 in math.CT, math.AT, and math.QA

Abstract: We study duals for objects and adjoints for $k$-morphisms in $\operatorname{Alg}_n(\mathcal{S})$, an $(\infty,n+N)$-category that models a higher Morita category for $E_n$ algebra objects in a symmetric monoidal $(\infty,N)$-category $\mathcal{S}$. Our model of $\operatorname{Alg}(\mathcal{S})$ uses the geometrically convenient framework of factorization algebras. The main result is that $\operatorname{Alg}_n(\mathcal{S})$ is fully $n$-dualizable, verifying a conjecture of Lurie. Moreover, we unpack the consequences for a natural class of fully extended topological field theories and explore $(n+1)$-dualizability.

Summary

We haven't generated a summary for this paper yet.