Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 21 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 469 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Detecting spatial homogeneity in the world trade web with Detrended Fluctuation Analysis (1308.0526v3)

Published 2 Aug 2013 in physics.data-an, physics.soc-ph, and q-fin.GN

Abstract: In a spatially embedded network, that is a network where nodes can be uniquely determined in a system of coordinates, links' weights might be affected by metric distances coupling every pair of nodes (dyads). In order to assess to what extent metric distances affect relationships (link's weights) in a spatially embedded network, we propose a methodology based on DFA (Detrended Fluctuation Analysis). DFA is a well developed methodology to evaluate autocorrelations and estimate long-range behaviour in time series. We argue it can be further extended to spatially ordered series in order to assess autocorrelations in values. A scaling exponent of 0.5 (uncorrelated data) would thereby signal a perfect homogeneous space embedding the network. We apply the proposed methodology to the World Trade Web (WTW) during the years 1949-2000 and we find, in some contrast with predictions of gravity models, a declining influence of distances on trading relationships.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.