Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse arrays of signatures for online character recognition (1308.0371v2)

Published 1 Aug 2013 in cs.CV and cs.NE

Abstract: In mathematics the signature of a path is a collection of iterated integrals, commonly used for solving differential equations. We show that the path signature, used as a set of features for consumption by a convolutional neural network (CNN), improves the accuracy of online character recognition---that is the task of reading characters represented as a collection of paths. Using datasets of letters, numbers, Assamese and Chinese characters, we show that the first, second, and even the third iterated integrals contain useful information for consumption by a CNN. On the CASIA-OLHWDB1.1 3755 Chinese character dataset, our approach gave a test error of 3.58%, compared with 5.61% for a traditional CNN [Ciresan et al.]. A CNN trained on the CASIA-OLHWDB1.0-1.2 datasets won the ICDAR2013 Online Isolated Chinese Character recognition competition. Computationally, we have developed a sparse CNN implementation that make it practical to train CNNs with many layers of max-pooling. Extending the MNIST dataset by translations, our sparse CNN gets a test error of 0.31%.

Citations (92)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com