Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characters as Graphs: Recognizing Online Handwritten Chinese Characters via Spatial Graph Convolutional Network (2004.09412v1)

Published 20 Apr 2020 in cs.CV

Abstract: Chinese is one of the most widely used languages in the world, yet online handwritten Chinese character recognition (OLHCCR) remains challenging. To recognize Chinese characters, one popular choice is to adopt the 2D convolutional neural network (2D-CNN) on the extracted feature images, and another one is to employ the recurrent neural network (RNN) or 1D-CNN on the time-series features. Instead of viewing characters as either static images or temporal trajectories, here we propose to represent characters as geometric graphs, retaining both spatial structures and temporal orders. Accordingly, we propose a novel spatial graph convolution network (SGCN) to effectively classify those character graphs for the first time. Specifically, our SGCN incorporates the local neighbourhood information via spatial graph convolutions and further learns the global shape properties with a hierarchical residual structure. Experiments on IAHCC-UCAS2016, ICDAR-2013, and UNIPEN datasets demonstrate that the SGCN can achieve comparable recognition performance with the state-of-the-art methods for character recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ji Gan (8 papers)
  2. Weiqiang Wang (171 papers)
  3. Ke Lu (35 papers)

Summary

We haven't generated a summary for this paper yet.