Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selection Mammogram Texture Descriptors Based on Statistics Properties Backpropagation Structure (1307.6542v1)

Published 10 Jul 2013 in cs.CV

Abstract: Computer Aided Diagnosis (CAD) system has been developed for the early detection of breast cancer, one of the most deadly cancer for women. The benign of mammogram has different texture from malignant. There are fifty mammogram images used in this work which are divided for training and testing. Therefore, the selection of the right texture to determine the level of accuracy of CAD system is important. The first and second order statistics are the texture feature extraction methods which can be used on a mammogram. This work classifies texture descriptor into nine groups where the extraction of features is classified using backpropagation learning with two types of multi-layer perceptron (MLP). The best texture descriptor as selected when the value of regression 1 appears in both the MLP-1 and the MLP-2 with the number of epoches less than 1000. The results of testing show that the best selected texture descriptor is the second order (combination) using all direction (0, 45, 90 and 135) that have twenty four descriptors.

Citations (9)

Summary

We haven't generated a summary for this paper yet.