Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Machine Learning to Automate Mammogram Images Analysis (2012.03151v2)

Published 6 Dec 2020 in eess.IV and cs.LG

Abstract: Breast cancer is the second leading cause of cancer-related death after lung cancer in women. Early detection of breast cancer in X-ray mammography is believed to have effectively reduced the mortality rate. However, a relatively high false positive rate and a low specificity in mammography technology still exist. In this work, a computer-aided automatic mammogram analysis system is proposed to process the mammogram images and automatically discriminate them as either normal or cancerous, consisting of three consecutive image processing, feature selection, and image classification stages. In designing the system, the discrete wavelet transforms (Daubechies 2, Daubechies 4, and Biorthogonal 6.8) and the Fourier cosine transform were first used to parse the mammogram images and extract statistical features. Then, an entropy-based feature selection method was implemented to reduce the number of features. Finally, different pattern recognition methods (including the Back-propagation Network, the Linear Discriminant Analysis, and the Naive Bayes Classifier) and a voting classification scheme were employed. The performance of each classification strategy was evaluated for sensitivity, specificity, and accuracy and for general performance using the Receiver Operating Curve. Our method is validated on the dataset from the Eastern Health in Newfoundland and Labrador of Canada. The experimental results demonstrated that the proposed automatic mammogram analysis system could effectively improve the classification performances.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (9)
  1. Xuejiao Tang (10 papers)
  2. Liuhua Zhang (2 papers)
  3. Wenbin Zhang (71 papers)
  4. Xin Huang (222 papers)
  5. Vasileios Iosifidis (18 papers)
  6. Zhen Liu (234 papers)
  7. Mingli Zhang (7 papers)
  8. Enza Messina (7 papers)
  9. Ji Zhang (176 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.