Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Fully Proportional Representation for Single-Crossing Electorates (1307.1252v1)

Published 4 Jul 2013 in cs.GT and cs.MA

Abstract: We study the complexity of winner determination in single-crossing elections under two classic fully proportional representation rules---Chamberlin--Courant's rule and Monroe's rule. Winner determination for these rules is known to be NP-hard for unrestricted preferences. We show that for single-crossing preferences this problem admits a polynomial-time algorithm for Chamberlin--Courant's rule, but remains NP-hard for Monroe's rule. Our algorithm for Chamberlin--Courant's rule can be modified to work for elections with bounded single-crossing width. To circumvent the hardness result for Monroe's rule, we consider single-crossing elections that satisfy an additional constraint, namely, ones where each candidate is ranked first by at least one voter (such elections are called narcissistic). For single-crossing narcissistic elections, we provide an efficient algorithm for the egalitarian version of Monroe's rule.

Citations (95)

Summary

We haven't generated a summary for this paper yet.