Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voting in Two-Crossing Elections (2205.00474v2)

Published 1 May 2022 in cs.GT and cs.DS

Abstract: We introduce two-crossing elections as a generalization of single-crossing elections, showing a number of new results. First, we show that two-crossing elections can be recognized in polynomial time, by reduction to the well-studied consecutive ones problem. We also conjecture that recognizing $k$-crossing elections is NP-complete in general, providing evidence by relating to a problem similar to consecutive ones proven to be hard in the literature. Single-crossing elections exhibit a transitive majority relation, from which many important results follow. On the other hand, we show that the classical Debord-McGarvey theorem can still be proven two-crossing, implying that any weighted majority tournament is inducible by a two-crossing election. This shows that many voting rules are NP-hard under two-crossing elections, including Kemeny and Slater. This is in contrast to the single-crossing case and outlines an important complexity boundary between single- and two-crossing. Subsequently, we show that for two-crossing elections the Young scores of all candidates can be computed in polynomial time, by formulating a totally unimodular linear program. Finally, we consider the Chamberlin-Courant rule with arbitrary disutilities and show that a winning committee can be computed in polynomial time, using an approach based on dynamic programming.

Summary

We haven't generated a summary for this paper yet.