Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering the Markov network structure (1307.0643v1)

Published 2 Jul 2013 in cs.IT, cs.LG, and math.IT

Abstract: In this paper a new proof is given for the supermodularity of information content. Using the decomposability of the information content an algorithm is given for discovering the Markov network graph structure endowed by the pairwise Markov property of a given probability distribution. A discrete probability distribution is given for which the equivalence of Hammersley-Clifford theorem is fulfilled although some of the possible vector realizations are taken on with zero probability. Our algorithm for discovering the pairwise Markov network is illustrated on this example, too.

Citations (1)

Summary

We haven't generated a summary for this paper yet.