Papers
Topics
Authors
Recent
2000 character limit reached

Hyperbolic and Elliptic Transport Barriers in Three-Dimensional Unsteady Flows

Published 27 Jun 2013 in math.DS, nlin.CD, physics.ao-ph, and physics.flu-dyn | (1306.6497v4)

Abstract: We develop a general theory of transport barriers for three-dimensional unsteady flows with arbitrary time-dependence. The barriers are obtained as two-dimensional Lagrangian Coherent Structures (LCSs) that create locally maximal deformation. Along hyperbolic LCSs, this deformation is induced by locally maximal normal repulsion or attraction. Along shear LCSs, the deformation is created by locally maximal tangential shear. Hyperbolic LCSs, therefore, play the role of generalized stable and unstable manifolds, while closed shear LCSs (elliptic LCSs) act as generalized KAM tori or KAM-type cylinders. All these barriers can be computed from our theory as explicitly parametrized surfaces. We illustrate our results by visualizing two-dimensional hyperbolic and elliptic barriers in steady and unsteady versions of the ABC flow.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.