Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Interpolative Decomposition of Separated Representations (1306.5013v2)

Published 20 Jun 2013 in math.NA and cs.NA

Abstract: We introduce tensor Interpolative Decomposition (tensor ID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy \epsilon, a near optimal subset of terms of a CTD to represent the remaining terms via a linear combination of the selected terms. Tensor ID can be used as an alternative to or a step of the Alternating Least Squares (ALS) algorithm. In addition, we briefly discuss Q-factorization to reduce the size of components within an ALS iteration. Combined, tensor ID and Q-factorization lead to a new paradigm for the reduction of the separation rank of CTDs. In this context, we also discuss the spectral norm as a computational alternative to the Frobenius norm. We reduce the problem of finding tensor IDs to that of constructing Interpolative Decompositions of certain matrices. These matrices are generated via either randomized projection or randomized sampling of the given tensor. We provide cost estimates and several examples of the new approach to the reduction of separation rank.

Citations (26)

Summary

We haven't generated a summary for this paper yet.