Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Electron MHD: dynamics and turbulence (1306.4544v1)

Published 19 Jun 2013 in physics.plasm-ph and astro-ph.HE

Abstract: (Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogolyubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two dimensional structures. Development of a cascade depends on the forcing (non-universal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade $\propto k{-2}$. The cascade remains weak (not critically-balanced). The cascade is UV-local, while the infrared locality is weakly (logarithmically) violated.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)