Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Imaginary eigenvalues and complex eigenvectors explained by real geometry (1306.0717v1)

Published 4 Jun 2013 in math.CV and math.RA

Abstract: This paper first reviews how anti-symmetric matrices in two dimensions yield imaginary eigenvalues and complex eigenvectors. It is shown how this carries on to rotations by means of the Cayley transformation. Then a real geometric interpretation is given to the eigenvalues and eigenvectors by means of real geometric algebra. The eigenvectors are seen to be \textit{two component eigenspinors} which can be further reduced to underlying vector duplets. The eigenvalues are interpreted as rotation operators, which rotate the underlying vector duplets. The second part of this paper extends and generalizes the treatment to three dimensions. Finally the four-dimensional problem is stated.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.