Papers
Topics
Authors
Recent
Search
2000 character limit reached

Imaginary eigenvalues and complex eigenvectors explained by real geometry

Published 4 Jun 2013 in math.CV and math.RA | (1306.0717v1)

Abstract: This paper first reviews how anti-symmetric matrices in two dimensions yield imaginary eigenvalues and complex eigenvectors. It is shown how this carries on to rotations by means of the Cayley transformation. Then a real geometric interpretation is given to the eigenvalues and eigenvectors by means of real geometric algebra. The eigenvectors are seen to be \textit{two component eigenspinors} which can be further reduced to underlying vector duplets. The eigenvalues are interpreted as rotation operators, which rotate the underlying vector duplets. The second part of this paper extends and generalizes the treatment to three dimensions. Finally the four-dimensional problem is stated.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.