Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Criteria of Spectral Gap for Markov Operators (1305.4460v6)

Published 20 May 2013 in math.FA

Abstract: Let $(E,\mathcal F,\mu)$ be a probability space, and let $P$ be a Markov operator on $L2(\mu)$ with $1$ a simple eigenvalue such that $\mu P=\mu$ (i.e. $\mu$ is an invariant probability measure of $P$). Then $\hat P:=\ff 1 2 (P+P*)$ has a spectral gap, i.e. $1$ is isolated in the spectrum of $\hat P$, if and only if $$|P|\tau:=\lim{R\to\infty} \sup_{\mu(f2)\le 1}\mu\big(f(Pf-R)+\big)<1.$$ This strengthens a conjecture of Simon and H$\phi$egh-Krohn on the spectral gap for hyperbounded operators solved recently by L. Miclo in \cite{M}. Consequently, for a symmetric, conservative, irreducible Dirichlet form on $L2(\mu)$, a Poincar\'e/log-Sobolev type inequality holds if and only if so does the corresponding defective inequality. Extensions to sub-Markov operators and non-conservative Dirichlet forms are also presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.