Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Classes of almost clean rings (1305.2115v1)

Published 9 May 2013 in math.RA

Abstract: A ring is clean (almost clean) if each of its elements is the sum of a unit (regular element) and an idempotent. A module is clean (almost clean) if its endomorphism ring is clean (almost clean). We show that every quasi-continuous and nonsingular module is almost clean and that every right CS and right nonsingular ring is almost clean. As a corollary, all right strongly semihereditary rings, including finite $AW*$-algebras and noetherian Leavitt path algebras in particular, are almost clean. We say that a ring $R$ is special clean (special almost clean) if each element $a$ can be decomposed as the sum of a unit (regular element) $u$ and an idempotent $e$ with $aR\cap eR=0.$ The Camillo-Khurana Theorem characterizes unit-regular rings as special clean rings. We prove an analogous theorem for abelian Rickart rings: an abelian ring is Rickart if and only if it is special almost clean. As a corollary, we show that a right quasi-continuous and right nonsingular ring is left and right Rickart. If a special (almost) clean decomposition is unique, we say that the ring is uniquely special (almost) clean. We show that (1) an abelian ring is unit-regular (equiv. special clean) if and only if it is uniquely special clean, and that (2) an abelian and right quasi-continuous ring is Rickart (equiv. special almost clean) if and only if it is uniquely special almost clean. Finally, we adapt some of our results to rings with involution: a *-ring is *-clean (almost *-clean) if each of its elements is the sum of a unit (regular element) and a projection (self-adjoint idempotent). A special (almost) *-clean ring is similarly defined by replacing idempotent'' withprojection'' in the appropriate definition. We show that an abelian *-ring is a Rickart *-ring if and only if it is special almost *-clean, and that an abelian *-ring is *-regular if and only if it is special *-clean.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)