Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A copositive formulation for the stability number of infinite graphs (1305.1819v3)

Published 8 May 2013 in math.OC and math.FA

Abstract: In the last decade, copositive formulations have been proposed for a variety of combinatorial optimization problems, for example the stability number (independence number). In this paper, we generalize this approach to infinite graphs and show that the stability number of an infinite graph is the optimal solution of some infinite-dimensional copositive program. For this we develop a duality theory between the primal convex cone of copositive kernels and the dual convex cone of completely positive measures. We determine the extreme rays of the latter cone, and we illustrate this theory with the help of the kissing number problem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.